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Reaction of a salicylaldiminato ligand with M(CH2-
SiMe2Ph)3(THF)2 (M � Sc, Y) leads to diastereoselective
formation of highly thermally stable L2MR complexes
whose reactivity with dihydrogen to form Group 3 metal
hydrides is described.

New ligand environments for supporting base free organo
Group 3 complexes are of interest due to the potential of such
complexes as olefin polymerization catalysts that do not require
a co-catalyst. Examples include the β-diketiminato ligand,1

amidinate 2 and bis-amidinate 3 donors, guanidinate anions,4

linked amido/1,4,7-triazacyclononane 5 and amino/amidinate 6

chelates, Schrock’s NON tridentate donor,7 N,O 8,9 and N,P 10

macrocycles and bulky tetradentate salen ligands.11 Related to
the last example is the bidentate N,O salicylaldiminato ligand,
which has been exploited in late transition metal catalysts
to provide an effective ligand environment for olefin polymer-
ization catalysts based on Ni() 12 and in the zirconium based
Mitsui catalysts.13 Herein we report new organometallic
complexes of Sc and Y supported by this ligand framework.14

The bulky salicylaldiminato ligand 1 was prepared according
to the literature procedure.12 Salt metathesis routes employing
Li or Na salts of the ligand and MCl3(THF)3 (M = Sc, Y)
precursors were ineffective for clean ligand institution onto the
Group 3 metal. However, the ligand can be smoothly attached
via alkane elimination 15 as shown in Scheme 1, providing
the base free organoscandium and organoyttrium derivatives

Scheme 1 Reagents and conditions: i, hexanes, 0 �C RT, 24 hours;
ii, 130 �C, 3 days, M = Sc, R = Me.

2�Sc and 2�Y directly. While the long known derivatives
M(CH2SiMe3)3(THF)2

16 are somewhat thermally sensitive and
best used in situ, we have found that the related compounds
M(CH2SiMe2Ph)3(THF)2 are both more amenable to isolation
in good to excellent yield, and serve as more convenient starting
materials for alkane elimination protocols.

Compounds 2 are produced exclusively as one diastereomer,
as indicated by 1H NMR spectroscopy,17 and neither exhibits
any fluxional behaviour in solution on the NMR timescale.
An X-ray crystallographic analysis of 2�Y 18 (Fig. 1 gives an

ORTEP 19 diagram along with selected metrical data) reveals
that the isomer produced has pseudo C2 symmetry with the
oxygen donor atoms occupying the apical sites of a distorted
trigonal bipyramid (O(1)–Y–O(2) = 159.93(5)�). In addition to
the preference for more electronegative donors to occupy the
axial sites, this arrangement in 2�M is favored on steric grounds,
allowing the bulky aryl groups on nitrogen to orient them-
selves away from each other above and below the N2YC
plane. Molecular mechanics calculations (MacSpartan Plus,
Wavefunction Inc., Irvine, CA, 1996) show that other isomers

Fig. 1 Molecular structure of 2�Y (hydrogen atoms omitted for clarity,
apart from those attached to C(1), C(10) and C(40); thermal ellipsoids
drawn to 30% probability level). Selected bond distances (Å) and angles
(�): Y–O(1) 2.1473(13), Y–O(2) 2.1342(13), Y–N(1) 2.4238(16), Y–N(2)
2.4420(15), Y–C(1) 2.384(2); O(1)–Y–O(2) 159.93(5), O(1)–Y–N(1)
77.30(5), O(1)–Y–N(2) 90.62(5), O(1)–Y–C(1) 100.05(6), O(2)–Y–N(1)
97.03(5), O(2)–Y–N(2) 75.83(5), O(2)–Y–C(1) 99.23(7), N(1)–Y–N(2)
121.58(5), M(1)–Y–C(1) 122.07(6), N(2)–Y–C(1) 116.28(6), Y–C(1)–Si
131.36(11).
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are characterized by rather severe steric interactions. A similar
ligand arrangement is observed in the six coordinate zirconium
bis-ligand complexes.13

Alkyl complexes 2 are highly thermally stable and exist in
solution unchanged for several days at temperatures up to
60 �C. When heated at higher temperatures (130�, 3 days),
conversion to a new species is observed; this process is clean
for M = Sc, but not for M = Y where further chemistry ensues.
The 1H NMR spectrum of the product of thermolysis of
2�Sc is consistent with a process involving metallation of the
remaining alkyl group with a C–H bond of an isopropyl group,
followed by a 1,3 migration of the Sc–C moiety to the aldimine
carbon, producing the four coordinate species 3 (Scheme 1).20

Connectivities were unequivocally established using 2D COSY
and HMQC NMR experiments and within the detection limits
of 1H NMR spectroscopy, the reaction is >97% diastereo-
selective.

Complexes 2 react smoothly and cleanly with H2 (4 atm, RT)
to eliminate H3CSiMe2Ph and give metal hydrides. In the case
of scandium, this species is not observed directly, but rather
rearranges to give the product 4 (Scheme 2) 21 via a process

related to that described above for 3. The molecularity of this
reaction is unknown but likely an intramolecular 1,3 shift
is involved. For the yttrium derivative, dimerization of the
hydrido complex that results from hydrogenolysis of the alkyl
group is favored over a similar 1,3 transfer of hydride to the
aldiminato carbon. The dimeric nature of the complex 5 22 is
indicated clearly by the triplet observed for the bridging
hydrides at 7.54 ppm (JY,H = 32 Hz). Dimer 5 is produced with
high diastereoselectivity and, although the NMR data are not
able to distinguish between the D2 symmetric rac diastereomer
and the C2h symmetric meso isomer, the rac isomer is most likely
to be favored on steric grounds.

In conclusion, we have prepared new thermally stable, base
free organoscandium and organoyttrium complexes incorpor-
ating the salicylaldiminato ligand 1 via a convenient and high
yielding alkane elimination protocol. Hydrogenolysis forms
reactive metal hydrides, whose olefin chemistry is currently
being investigated. These compounds are neutral analogs of the
Mitsui catalyst system based on Group 4 metals, and their role
as olefin polymerization catalysts 13 and lactide polymerization
initiators 23 is being explored.
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Scheme 2 Reagents and conditions: i, H2, 4 atm, toluene, RT, 4 hours.
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